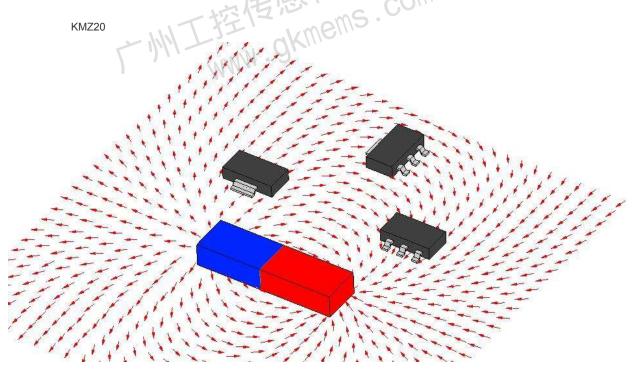


KMY22

KMY20

KMY_KMZ


Linear Magnetic Field Sensors

SPECIFICATIONS

- AMR sensor
- Very high sensitivity
- Almost no hysteresis
- Various applications
- Available with internal magnet
- Available in several packages

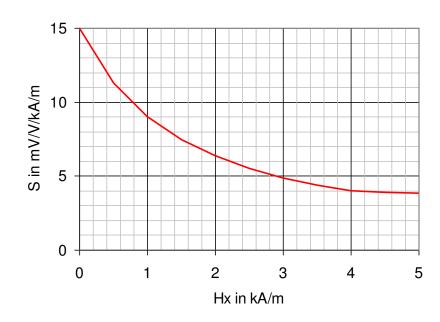
Due to its featured properties - high sensitivity and almost no hysteresis - the **KMY** / **KMZ** sensors are used in a wide range of applications, like magnetic field measurement, revolution counters, proximity detecting, and position measurement.

An uniaxial linear magnetic field will generate a linear output within the specified magnetic field range.

FEATURES

- Output proportional to magnetic field strength with very high sensitivity
- Very small hysteresis
- Large operating temperature range, from -40°C up to +150 °C
- Highly reliable
- With / without internal magnet

APPLICATIONS


- Detection of very weak magnetic fields, like earth magnetic field, or field generated by small magnetic particles
- Detection of objects that distort non-local magnetic fields
- Revolution measurement on ferromagnetic gears
- Contactless switch
- Contactless displacement / position sensor

DESCRIPTION

ill generate An uniaxial linear magnetic field (in y-direction) will generate a linear output within the specified magnetic field range. The sensor is available in two types: the KMY 20 M, KMY 21 M and KMZ 20 M sensor types contain intrinsic magnets which provide an auxiliary magnetic field (in x-direction) at the sensor die which prevents magnetic domains from flipping irregularly.

If the dies MR174B or the components KMY22, KMY20S or KMZ20S are used, the auxiliary field has to be provided by the user. The dependence of the sensitivity with auxiliary field strength is depicted in the figure aside.

Figure 1: Sensitivity dependence on auxiliary field strength

TEL: 400-822-6658

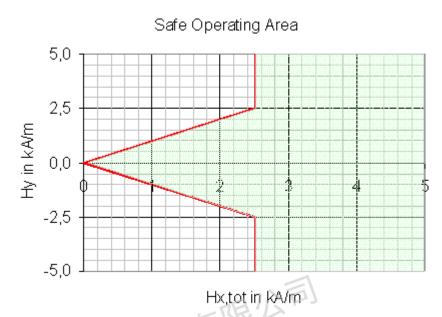
Auxiliary Field Dependence

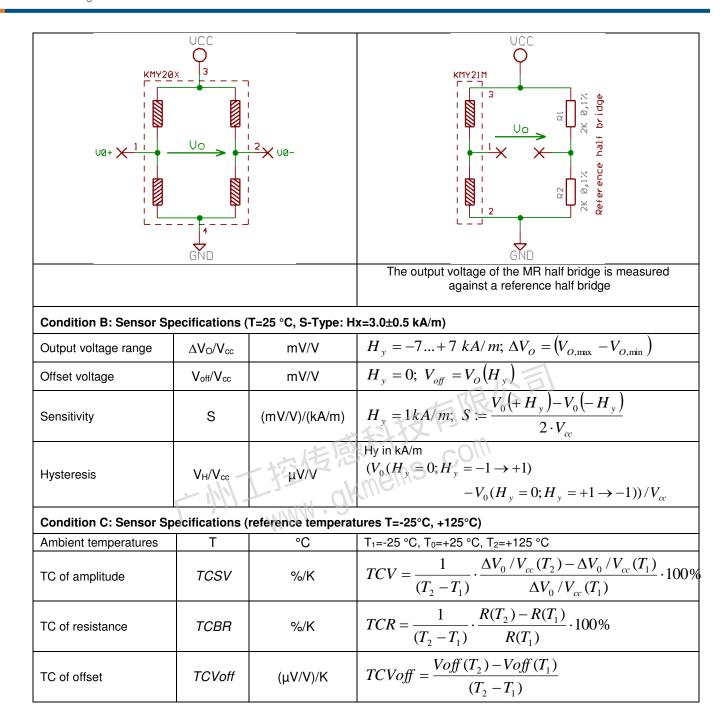
Auxiliary field strengths below Hx<1.5 kA/m are not recommended, as small disturbances may flip the magnetization domains. Sometimes, the magnetic conditions in the application may provide enough Hx bias field stabilization. MEAS Germany can provide advice for customer specific magnet arrangements.

If a bias field Hx is not applied or Hx is less than 2.5 kA/m, the sensor may be used only in a limited field range Hy, depending on the present total bias field Hx,tot. In this case, it is strongly recommended to 'premagnetize' the sensor, i.e. align all magnetic domains consistently, prior to the measurement.

Hx,tot is the sum of all acting magnetic fields in x direction at the sensor die.

Do not use the sensor outside the safe operating area. Leaving the save operating area can destroy an existing premagnetization and therefore will lead to unreproducible sensor signals.




Figure 2: Safe operating area

CHARACTERISTIC VALUES / SENSOR SPECIFICATIONS

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating Limits		MMM.				
max. supply voltage	V _{cc,max}	,,			10	V
max. current	I _{cc,max}				9	mA
operating temperature	T _{op}		-40		+150	°C
storage temperature	T _{st}		-40		+150	°C
General Sensor Specifica	tions					
TC of amplitude	TCSV	Condition A, C		-0.35		%/K
TC of resistance	TCBR	Condition A, C		+0.35		%/K
TC of offset	TCVoff	Condition A, C	-4	0	+4	μV/V/K
Sensor Specifications KM	/IY 20 S, KM	Z 20 S, KMY 22 (T=25 °C, H	x=3 kA/m e	xternally)		
Supply voltage	V _{cc}	Condition A, B		5		V
Bridge resistance	Rb	Condition A, B	1200	1700	2200	Ω
Output signal range	$\Delta V_0/V_{cc}$	Condition A, B	16	20	24	mV/V
Offset voltage	$V_{\text{off}}/V_{\text{cc}}$	Condition A, B	-1	0	+1	mV/V
Sensitivity	S	Condition A, B	3.7	4.7	5.7	mV/V/kA/m

Hysteresis	V _H /V _{cc}	Condition A, B	-	-	50	μV/V
Sensor Specifications KMY 20 M, KMZ 20 M (T=25 °C, Hx=1.5±0.5 kA/m internally)						
Supply voltage	Vcc	Condition A, B		5		V
Bridge resistance	Rb	Condition A, B	1200	1700	2200	Ω
Output signal range	ΔV ₀ /V _{cc}	Condition A, B	16	20	24	mV/V
Offset voltage	V _{off} /V _{cc}	Condition A, B	-1.5	0	+1.5	mV/V
Sensitivity	S	Condition A, B	4	5.5	7	mV/V/kA/m
Hysteresis	V _H /V _{cc}	Condition A, B	-	-	50	μV/V
Sensor Specifications KI	MY 21 M (T=	25 °C, Hx=2.5±1.0 kA/m inte	ernally)			
Supply voltage	Vcc	Condition A, B		5		V
Bridge resistance	Rb	Condition A, B	1100	1500	1900	Ω
Output signal range	ΔV ₀ /V _{cc}	Condition A, B	8	9.5	12	mV/V
Offset voltage	V _{off} /V _{cc}	Condition A, B	48	50	52	%Vcc
Sensitivity	S	Condition A, B	2.05	2.50	3.10	mV/V/kA/m
Hysteresis	V _H /V _{cc}	Condition A, B	-	211	50	μV/V

nay affect device reliability. MEASUREMENT C		一层	ent damage to the device. Exposure to limiting values for extended per
Parameter	Symbol	Unit 9	Condition
Condition A: Set Up Co	nditions	11/14	
Ambient temperature	Т	°C	23±5 Measurement results are extrapolated to 25°C by using the given temperature coefficients
Supply voltage	V _{cc}	V	5
Output voltage	V _O V _O /V _{cc}	mV mV/V	V _O =(V ₀₊ -V ₀₋) Output voltages are also given independently on supply voltage: example: Vo/Vcc=(V ₀₊ -V ₀₋)/Vcc; measure MR half bridge against reference half bridge
Reference half bridge			2* 2 kΩ 0.1% (KMY21M only)
for full (KMY20S, KMY20M,	bridge sensors KMY22, KMZ		for half bridge sensors (KMY 21 M)

SENSOR MODELS

KMY 20 / KMY 22 / KMZ 20

The KMY and KMZ sensors are highly sensitive magnetic field sensors which utilize the anisotropic magneto resistance effect. The KMY 20 and KMZ 20 sensors contain a Wheatstone bridge.

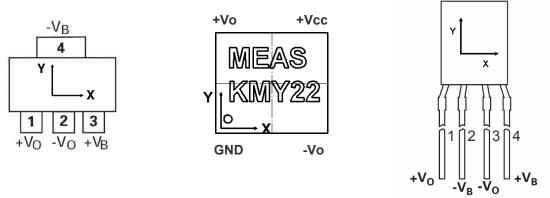
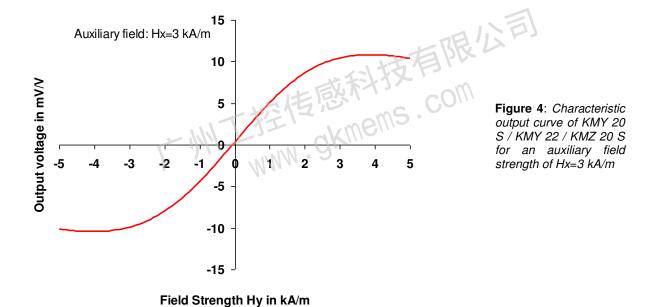
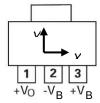
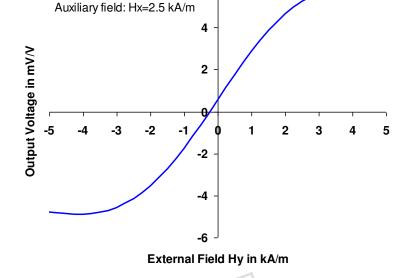




Figure 3: Pad annotation and definition of field direction for KMY & KMZ



KMY 21

In contrast to the KMY20 sensor products, the **KMY 21 M** consists of a half bridge, making the sensor well suited for dynamic measurements.

It contains an internal magnet, which provides an auxiliary field of approx. 2.5 kA/m.

6

Figure 5: Characteristic curve for KMY21M

TEMPERATURE DEPENDENCIES

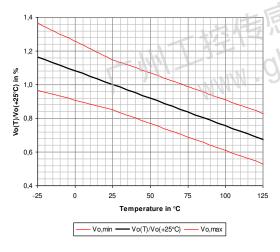
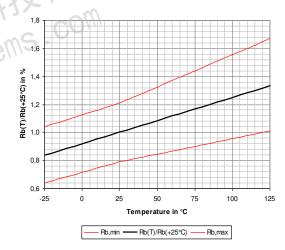
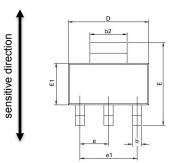
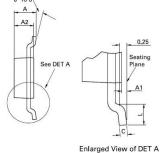


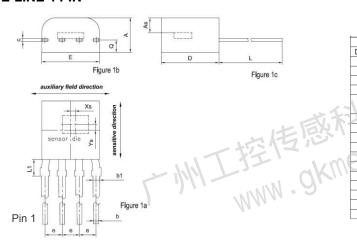
Figure 6: signal amplitude related to room temperature value

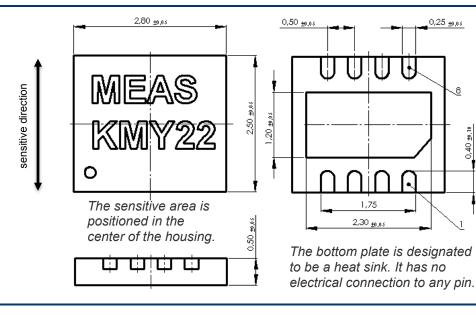

Figure 7: bridge resistance related to room temperature value

PACKAGES

SOT223


Recommended solder reflow process for all packages according to IPC/JEDEC J-STD-020D (Pb-Free Process)

DIM Millim	neters	Inc	hes	DIM	Millin	neters	Inc	hes	
	Min	Max	Min	Max		Min	Max	Min	Max
Α	- 10	1.80		0.071	е	2.30	BSC	0.090	5 BSC
A1	0.02	0.10	0.0008	0.004	e1	4.60	BSC	0.181	BSC
b	0.66	0.84	0.026	0.033	E	6.70	7.30	0.264	0.287
b2	2.90	3.10	0.114	0.122	E1	3.30	3.70	0.130	0.146
С	0.23	0.33	0.009	0.013	L	0.90	120	0.355	
D	6.30	6.70	0.248	0.264	2	-	- 2	- 5	-


E-LINE 4 PIN

		Milimeter			Inches	
DIE POS.	KMZ20S	KMZ20M	tolerances	KMZ20S	KMZ20M	tolerances
Xs	+0.05	+0.05	+/-0.10	+0.002	+0.002	+/-0.004
Ys	+0.50	+0.50	+/-0.10	+0.02	+0.02	+/- 0.004
As	1.05	1.05	+/-0.10	0.041	0.041	+/-0.004
Millmeter				Inches		

		Millmeter				
DIM	min.	typ.	max.	min.	typ.	max.
Α	2.4	7111	2.8	0.094		0.110
b	0,35	D	0,48	0.0138		0.0189
b1 C	0.45		0.60	0.0178		0.024
C	0.25		0.35	0.0098		0.0138
D	4.0		4.4	0.157		0.173
E	3.8		4.4	0.150		0.173
L	12.0		14.0	0.472		0.551
е	NOM. 1.25			NOM. 0.049		
L1	1.1		1.3	0.043		0.051

UTDFN8 2.5X2.8 MM

0,25 ±0,08

ORDERING CODE

DEVICE	DIE	PACKAGE	INTERNAL MAGNET	PART NUMBER
KMY20 S	full bridge	SOT-223	NO	G-MRCO-006
KMY20 M	full bridge	SOT-223	YES	G-MRCO-001
KMY21 M	half bridge	SOT-223	YES	G-MRCO-011
KMZ20 S	full bridge	E-Line	NO	G-MRCO-007
KMZ20 M	full bridge	E-Line	YES	G-MRCO-003
KMY22	full bridge	UTDFN8	NO	on request

广州工控传感科技有限公司

电话: 400-822-6658 邮箱: gzgk@foxmail.com 网址: www.gkmems.com

地址:广州市天河区珠江西路15号16层